59 research outputs found

    Edge Enhancement Optimization in Flexible Endoscopic Images to the Perception of Ear, Nose and Throat Professionals

    Get PDF
    Objectives: Digital endoscopes are connected to a video processor that applies various operations to process the image. One of those operations is edge enhancement that sharpens the image. The purpose of this study was to (1) quantify the level of edge enhancement, (2) measure the effect on sharpness and image noise, and (3) study the influence of edge enhancement on image quality perceived by ENT professionals. Methods: Three digital flexible endoscopic systems were included. The level of edge enhancement and the influence on sharpness and noise were measured in vitro, while systematically varying the levels of edge enhancement. In vivo images were captured at identical levels of one healthy larynx. Each series of in vivo images was presented to 39 ENT professionals according to a forced pairwise comparison test, to select the image with the best image quality for diagnostic purposes. The numbers of votes were converted to a psychometric scale of just noticeable differences (JND) according to the Thurstone V model. Results: The maximum level of edge enhancement varied per endoscopic system and ranged from 0.8 to 1.2. Edge enhancement increased sharpness and noise. Images with edge enhancement were unanimously preferred to images without edge enhancement. The quality difference with respect to zero edge enhancement reaches an optimum at levels between 0.7 and 0.9.Conclusion: Edge enhancement has a major impact on sharpness, noise, and the resulting perceived image quality. We conclude that ENT professionals benefit from this video processing and should verify if their equipment is optimally configured. Level of Evidence: N/A Laryngoscope, 2023.</p

    Low-energy properties and magnetization plateaus in a 2-leg mixed spin ladder

    Full text link
    Using the density matrix renormalization group technique we investigate the low-energy properties and the magnetization plateau behavior in a 2-leg mixed spin ladder consisting of a spin-1/2 chain coupled with a spin-1 chain. The calculated results show that the system is in the same universality class as the spin-3/2 chain when the interchain coupling is strongly ferromagnetic, but the similarity between the two systems is less clear under other coupling conditions. We have identified two types of magnetization plateau phases. The calculation of the magnetization distribution on the spin-1/2 and the spin-1 chains on the ladder shows that one plateau phase is related to the partially magnetized valence-bond-solid state, and the other plateau state contains strongly coupled S=1 and s=1/2 spins on the rung.Comment: 6 pages with 8 eps figure

    Twenty five years after KLS: A celebration of non-equilibrium statistical mechanics

    Full text link
    When Lenz proposed a simple model for phase transitions in magnetism, he couldn't have imagined that the "Ising model" was to become a jewel in field of equilibrium statistical mechanics. Its role spans the spectrum, from a good pedagogical example to a universality class in critical phenomena. A quarter century ago, Katz, Lebowitz and Spohn found a similar treasure. By introducing a seemingly trivial modification to the Ising lattice gas, they took it into the vast realms of non-equilibrium statistical mechanics. An abundant variety of unexpected behavior emerged and caught many of us by surprise. We present a brief review of some of the new insights garnered and some of the outstanding puzzles, as well as speculate on the model's role in the future of non-equilibrium statistical physics.Comment: 3 figures. Proceedings of 100th Statistical Mechanics Meeting, Rutgers, NJ (December, 2008

    Heterozygous missense variants of LMX1A lead to nonsyndromic hearing impairment and vestibular dysfunction

    Get PDF
    Unraveling the causes and pathomechanisms of progressive disorders is essential for the development of therapeutic strategies. Here, we identified heterozygous pathogenic missense variants of LMX1A in two families of Dutch origin with progressive nonsyndromic hearing impairment (HI), using whole exome sequencing. One variant, c.721G > C (p.Val241Leu), occurred de novo and is predicted to affect the homeodomain of LMX1A, which is essential for DNA binding. The second variant, c.290G > C (p.Cys97Ser), predicted to affect a zinc-binding residue of the second LIM domain that is involved in protein–protein interactions. Bi-allelic deleterious variants of Lmx1a are associated with a complex phenotype in mice, including deafness and vestibular defects, due to arrest of inner ear development. Although Lmx1a mouse mutants demonstrate neurological, skeletal, pigmentation and reproductive system abnormalities, no syndromic features were present in the participating subjects of either family. LMX1A has previously been suggested as a candidate gene for intellectual disability, but our data do not support this, as affected subjects displayed normal cognition. Large variability was observed in the age of onset (a)symmetry, severity and progression rate of HI. About half of the affected individuals displayed vestibular dysfunction and experienced symptoms thereof. The late-onset progressive phenotype and the absence of cochleovestibular malformations on computed tomography scans indicate that heterozygous defects of LMX1A do not result in severe developmental abnormalities in humans. We propose that a single LMX1A wild-type copy is sufficient for normal development but insufficient for maintenance of cochleovestibular function. Alternatively, minor cochleovestibular developmental abnormalities could eventually lead to the progressive phenotype seen in the families

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Constraints on the cosmic expansion history from GWTC–3

    Get PDF
    We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding H0=688+12km  s1Mpc1{H}_{0}={68}_{-8}^{+12}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8km  s1Mpc1{H}_{0}={68}_{-6}^{+8}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814

    Edge Enhancement Optimization in Flexible Endoscopic Images to the Perception of Ear, Nose and Throat Professionals

    No full text
    Objectives: Digital endoscopes are connected to a video processor that applies various operations to process the image. One of those operations is edge enhancement that sharpens the image. The purpose of this study was to (1) quantify the level of edge enhancement, (2) measure the effect on sharpness and image noise, and (3) study the influence of edge enhancement on image quality perceived by ENT professionals. Methods: Three digital flexible endoscopic systems were included. The level of edge enhancement and the influence on sharpness and noise were measured in vitro, while systematically varying the levels of edge enhancement. In vivo images were captured at identical levels of one healthy larynx. Each series of in vivo images was presented to 39 ENT professionals according to a forced pairwise comparison test, to select the image with the best image quality for diagnostic purposes. The numbers of votes were converted to a psychometric scale of just noticeable differences (JND) according to the Thurstone V model. Results: The maximum level of edge enhancement varied per endoscopic system and ranged from 0.8 to 1.2. Edge enhancement increased sharpness and noise. Images with edge enhancement were unanimously preferred to images without edge enhancement. The quality difference with respect to zero edge enhancement reaches an optimum at levels between 0.7 and 0.9. Conclusion: Edge enhancement has a major impact on sharpness, noise, and the resulting perceived image quality. We conclude that ENT professionals benefit from this video processing and should verify if their equipment is optimally configured. Level of Evidence: N/A Laryngoscope, 2023.ImPhys/Computational ImagingImPhys/Rieger grou

    Phylum XIV. Bacteroidetes phyl. nov.

    No full text
    corecore